Distributed multichannel speech enhancement based on perceptually-motivated Bayesian estimators of the spectral amplitude
نویسندگان
چکیده
In this study, the authors propose multichannel weighted Euclidean (WE) and weighted cosh (WCOSH) cost function estimators for speech enhancement in the distributed microphone scenario. The goal of the work is to illustrate the advantages of utilising additional microphones and modified cost functions for improving signal-to-noise ratio (SNR) and segmental SNR (SSNR) along with log-likelihood ratio (LLR) and perceptual evaluation of speech quality (PESQ) objective metrics over the corresponding single-channel baseline estimators. As with their single-channel counterparts, the perceptually-motivated multichannel WE and WCOSH estimators are functions of a weighting law parameter, which influences attention of the noisy spectral amplitude through a spectral gain function, emphasises spectral peak (formant) information, and accounts for auditory masking effects. Based on the simulation results, the multichannel WE and WCOSH cost function estimators produced gains in SSNR improvement, LLR output and PESQ output over the single-channel baseline results and unweighted cost functions with the best improvements occurring with negative values of the weighting law parameter across all input SNR levels and noise types.
منابع مشابه
Distributed multichannel speech enhancement with minimum mean-square error short-time spectral amplitude, log-spectral amplitude, and spectral phase estimation
In this paper, the authors present optimal multichannel frequency domain estimators for minimum mean-square error (MMSE) short-time spectral amplitude (STSA), log-spectral amplitude (LSA), and spectral phase estimation in a widely distributed microphone configuration. The estimators utilize Rayleigh and Gaussian statistical models for the speech prior and noise likelihood with a diffuse noise f...
متن کاملSpeech enhancement using Bayesian estimators of the perceptually-motivated short-time spectral amplitude (STSA) with Chi speech priors
In this paper, the authors propose new perceptually-motivated Weighted Euclidean (WE) and Weighted Cosh (WCOSH) estimators that utilize more appropriate Chi statistical models for the speech prior with Gaussian statistical models for the noise likelihood. Whereas the perceptually-motivated WE and WCOSH cost functions emphasized spectral valleys rather than spectral peaks (formants) and indirect...
متن کاملMultichannel speech enhancement using Bayesian spectral amplitude estimation
This paper introduces two shon-time spectral amplitude estimators for speech enhancement with multiple microphones. Based on joint Gaussian models of speech and noise Fourier coefficients the clean speech amplitudes are estimated with respect to the MMSE or the MAP criterion. The estimators outperform single microphone minimum mean square amplitude estimators when the speech is highly correlate...
متن کاملEfficient β-order Perceptually Motivated Spectral Amplitude Bayesian Estimator Based On Chi-distribution for Speech Enhancement
The traditional Bayesian estimator of short-time spectral amplitude is based on the minimization of the squared-error cost function under the common Gaussian probability density function (pdf). The Gaussian distribution, however, is not the optimal probability distribution. To overcome this phenomenon, we considered to replace the traditional distribution hypothesis of spectral amplitude of spe...
متن کاملBeta-order minimum mean-square error multichannel spectral amplitude estimation for speech enhancement
In this paper, the minimum mean-square error (MMSE) ˇ-order estimator for multichannel speech enhancement is proposed. The estimator is an extension of the single-channel MMSE ˇ-order and multichannel MMSE short-time spectral amplitude estimators using Rayleigh and Gaussian distributions for the statistical models under the assumption of a diffuse noise field where the noise is estimated indepe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013